1.Jonathan James
James adalah orang Amerika, saat baru umur 16 taun dia dikirim ke penjara karena kelakuannya di dunia maya. Situs departemen pertahanan Amerika dibobol olehnya dan dia cuma bilang itu tantangan bagi dia dan merupakan suatu kesenangan tersendiri. NASA juga terkena dampak keisengan dia, James mencuri software NASA yang diperkirakan seharga $1.7 juta dollar AS. Sehingga NASA dipaksa untuk mematikan server dan sistemnya. Karena kelakuannya, dia
juga tidak boleh menyentuh komputer selama 10 tahun. Tapi sekarang dia sudah di jalan yang benar dan bikin sebuah perusahaan keamanan di bidang komputer.
2.Adrian Lamo
Dia membobol New York Times untuk mendapatkan info personal dan beberapa security number dan membobol Microsoft. Dia akhirnya didenda $65.000 dollar US. Saat ini dia jadi pembicara di beberapa acara seminar.
3.Kevin Mitnick
Inilah legenda hidup yang saat ini benar-benar mantap dalam dunia hack.
Inilah kelakuan dia:
-Menggunakan Los Angeles bus transfer system buat mendapatkan tumpangan gatis
-Mengelabui FBI
-Hacking kedalam DEC system (Digital Equipment Corporation)
-Mendapatkan administrator positon dalam satu komputer IBM biar menang judi, karena adminnya yang punya laptop IBM tersebut
-Hacking Motorola, NEC, Nokia, Sun Microsystems dan Fujitsu Siemens systems
Dan masih banyak lagi kelakuan dia yang luar biasa.
seorang white hat hacker pun yang bernama Tsutomu Shimomura pun (ahli
juga dia dan merupakan top 5 white hat hacker), dihack komputer systemnya, dan terjadilah perang luar biasa. Dia dilacak dan ditangkap oleh FBI dengan bantuan Tsutomu Shimomura yang melacak (tracking) lewat jaringan HP’ yang dibawa ama Mitnick saat itu. Tapi sekarang dia sudah tobat dan menjadi seorang penulis buku, konsultan security, dan pembicara.
4.Kevin Poulsen
Juga dikenal dengan Dark Dante. Dia menghack database FBI. Selain itu dia
juga menghack seluruh lines phone station karena Memang kemahiran dia menghack lewat phone lines. Saat ini dia jadi senior editor di Wired News, dan berhasil menangkap 744 penawaran sex melalui profiles Myspace.
5.Robert Tappan Moris
Dia berasal dari hannover Jerman yang menamakan komputernya FUCKUP (First Universal Cybernetic-Kinetic Ultra-Micro Programmer). Dia melakukan beberapa keberhasilan dalam menghack pada kurun waktu 1985-1988. Dia
juga seorang cocaine addict.
Dia berhasil membobol beberapa sistem militer AS dan menghack sebuah pusat tenaga nuklir AS pada jaman perang dingin dan hasil hack’annya dijual ke KGB (Agen Rahasia Uni Soviet). Dia ditemukan tewas pada tahun 1988, menurut info dia membakar tubuhnya sendiri, namun siapa tahu ini merupakan konspirasi tingkat tinggi antara US dan Soviet pada perang dingin.
Minggu, 31 Januari 2010
Cenote Angelita : Sungai bawah laut?
Jika anda seorang penyelam, maka anda harus mengunjungi Cenote Angelita, Meksiko. Disana ada sebuah gua. Jika anda menyelam sampai kedalaman 30 meter, airnya air segar (tawar), namun jika anda menyelam sampai kedalaman lebih dari 60 meter, airnya menjadi air asin, lalu anda dapat melihat sebuah "sungai" di dasarnya, lengkap dengan pohon dan daun daunan.
Namun tentu saja, itu bukanlah sungai biasa, itu adalah lapisan hidrogen sulfida, namun nampak seperti sungai... luar biasa bukan?
Namun tentu saja, itu bukanlah sungai biasa, itu adalah lapisan hidrogen sulfida, namun nampak seperti sungai... luar biasa bukan?
Jumat, 08 Januari 2010
The BloodSeekers 7000! storyline
Jadi gini, ini adalah storyline game yg pengen gw bikin, kalo tertarik, join grup N.C.E di facebook ya. link N.C.E: http://www.facebook.com/topic.php?uid=114677976582&topic=14540#/group.php?gid=114677976582
inilah storylinenya, selamat menikmati!
Tahun 3000,hidup di bumi adalah hidup serba extrim.Sejak abad ke 22,pemanaasan global telah berpacu secepat para dewa,dan jika diukur dari abad ke 21,temperatur bumi telah naik sebanyak 8 derajat,yg mengakibatkan sistem iklim bumi yg sungguh extrim.Hutan Amazon sekarang adalah Gurun Amazon,supervulcan Yellowstone telah meletus,siklus peredaran air laut dunia telah berhenti tanpa jejak,dan manusia telah berperang 5 Perang dunia yg mengakibatkan kematian miliyaran orang.Perang dunia pertama,kedua dan ketiga adalah hanya perang kecil2an jika dilihat dari segi perang keempat dan kelima.Yg kelima adalah yg paling muda dan paling dasyat,menewaskan hampir 65% dari selruh penduduk dunia pada saat itu (4,5 miliyar orang),disebabkan oleh pasukan2 fasist/fanatical hadra yg sekuat Nazi dan pemanipulasian antimatter yg gagal.Karena kesusahan hidup di bumi inilah yg mengakibatkan seluruh manusia melupakan semua masalah di bumi dan malah melihat ke atas,ke angkasa.
Di saat inilah manusia melakukan dan membuat suatu perjanjian universal yg melibatkan perdamaian,penghancuran senjata2 pemusnah massal,pemersatuan dunia,dan memfokuskan 50% dana dunia ke dana riset ilmiah,hampir seluruhnya tentang space travelism dan antimatter.Lalu pada tahun 3000an,riset itu pun akhirnya membuahkan hasil,yaitu kemampuan manusia untuk menjelajahi angkasa luar dan kemampuan manusia untuk membuat sub-anti-matter yg kekuatanya setengah dari antimatter tetapi pembuatanya hanya membutuhkan seperlima dari pembuatan 1 pure antimatter yg bahaya.Karena pengetahuan2 tentang bahaya di luar ankasa,material2 yg super kuat,dan energy source baru yaitu antimatter yg merejenerasi terus menerus yg menghasilkan free energy yg telah diimpikan para ilmuan2 di abad 21.Tetapi populasi manusia sangat melebihi batas populasi di bumi yg semakin kecil tempat yg bisa ditinggali.Para ilmuan pu sadar bahwa manusia perlu menetap di suatu dunia lain,yg lingkungan lebih ramah dari bumi.
Nah,karena itu dibuatkanlah misi perjalanan angkasa yg paling beresiko di sejarah manusia.Yaitu 3 tim penjelajah yg 1 tim berisi 1000 orang.1 tim memiliki 1 kapal yg besarnya sama dengan 1 kota. Pioneer 1 bisa juga disebut tim tumbal yg misinya mengetes apakah mungkin manusia bisa menjelajahi angkasa ke bintang2 lainya.Mereka berisikin 1000 orang Narapidana yg akan dihukum mati dan di luncurkan ke sektor tata surya Zeus.Dan,telah dibuktikan bahwa mereka masih ada disitu juga setelah 50 tahun,dan jumlah mereka bertambah menjadi 3000 orang(karena besarnya kapal).Lalu,PIONEER 2,berisikan orang2 Eropa-Amerika Selatan diluncurkan ke sektor tata surya Hercules,dan setelah 50 tahun,mereka masih ada disitu,Lalu diluncurkanlah PIONEER 3,Kapal berisikan 1000 orang Asia-Afrika-Timur Tengah yg ditujukan ke planet Krakariss,tetapi ada keanehan,setelah perjalanan 10 tahun,mereka menghilang darimata bumi,diduga mereka memasuki suatu wormhole dan melalui perhitungan yg rumit,Kemungkinan besar mereka bertujuan ke Tata Surya Dagon.setelah ribuan tahun,bumi pun melupakan mereka
2000 tahun kemudian, PIONEER 1 melapor telah sampai ke planet yang berkadar 20% oksigen, ber- air, dan bergravitasi lebih ringan dari bumi, yaitu 5,2 N/m2. membuat mereka bergerak lebih ringan dan lebih cepat dari biasanya.
dengan selisih sekitar 70 tahun, PIONEER 2 melapor telah mendarat ke planet yang gersang, dengan memiliki perbandingan antara daratan dan lautan adalah 5 : 1. Dengan selisih sekitar 20 tahun, PIONEER 3 yang memasuki suatu wormhole dan mendarat di suatu planet berkadar normal seperti bumi abad 21, tetapi memiliki suatu zat yang berbahaya, sehingga mereka terkena radiasinya dan merubah kondisi fisik mereka. Planet Krakariss diperkirakan kadar oksigennya 60% dan sedikitnya kadar lainnya yang merugikan, yang tadinya mau diberangkatkan dengan PIONEER 3 dan gagal, maka diberangkatkanlah PIONEER 4 setelah 2000 tahun. Dan sesampainya PIONEER 4 membuahkan kabar baik, kadar oksigennnya lebih dari perkiraan, yaitu 70%. Dan kelompoknya menemukan suatu energy source yang sangat tidak stabil, dan mengeluarkan cairan merah yang berbahaya, suatu batu yang ber energi 3 kali lipat anti matter sebesar genggaman tangan, mereka menamakannya Krakariss Blood Stone( biasa disebut Blood Stone saja). Dan diperkirakan batu itu mempunyai suatu tower batu yang alami, tetapi mempunyai keanehan, yaitu kesamaan antara kedua towernya, karena alami tidak pernah sama persis, pasti ada perbedaan antara kedua tower tersebut. Dan tugas towernya untuk menyeimbangkan ketidak stabilan batu tersebut. Lalu PIONEER 1, PIONEER 2, dan PIONEER 3 berangkat menuju planet krakariss tersebut, tetapi diantara anggota2 tersebut ada yang ditinggal di planet masing2, dan sekarang dijadikan Homeplanet mereka.
di planet krakariss, PIONEER 1, 2 ,dan 3 memutus komunikasi antara bumi - PIONEER. karena dengan kabar baiknya itu, para anggota2 tersebut menjadi egois, ingin mendapatkan energy sourcenya itu untuk kelompoknya sendiri. setelah 20 tahun mereka menetap disitu, terjadinya keanehan, yaitu sedikit2 menimbulkan radiasi yang menyebabkan mutasi fisik. mutasi itu diperkirakan karena Blood stone. diperkirakannya begini, ternyata blood tower itu hanya menyeimbangkan energinya, TIDAK untuk radiasinya, sehingga tetap berbahaya untuk dihuni. setiap radiasinya memperkuat tenaganya, misalnya, PIONEER 1 memiliki kecepatan pada lari karena gravitasinya, sehingga mutasinya mempercepat kaki tetapi memperlemah kekuatan fisiknya. PIONEER berisi tahanan hukuman mati tersebut menamakan kelompoknya BANDITS. PIONEER 2 yang terbiasa dengan kondisi homeplanetnya yang berkadar air sedikit, sehingga suhu tidak terkendali, sehingga mutasinya memperkuat daya tahan penyakit, menambah hormon pertumbuhan yang berlebihan, sehingga gigantisme, dan menambah kekuatan tubuh, tetapi agak idiot, mereka menamakan kelompoknya MOHRUS. PIONEER 3, tidak terkena mutasi karna sudah terkena mutasi di homeplanetnya yang menambah ketajaman mata, dan mempunyai daya tahan tubuh yang sangat besar, lebih besar dari MOHRUS, tetapi mereka mendapat masalah, yaitu pada saat diperhunikannya planet Krakariss, suatu makhluk asing yang berteknologi mendatangi planet krakariss dan memperbudak wilayah PIONEER 3, alien tersebut bernama DRAMURIAN, dan budak2 tersebut sebagian besar dijadikan budak perang yang untuk merebut Blood stone, budak perang tersebut dinamakan DATHURIAN. Dan PIONEER 4, diperintahkan oleh bumi atau disebut TERRA, untuk merebut blood stone tersebut untuk kepentingan penelitian di terra, dan perjanjiannya mereka akan mendapatkan 1/2 bagian blood stone nya. Dan PIONEER 4 diangkat menjadi tentara yang bernama TERRAN KRAKARISS (disebut TERRAN saja). Setelah itu, keempat Clan tersebut, membuat perjanjian untuk menyatakan perang. CLAN SIAPA SAJA, YANG MEMENANGI PERANG, MAKA CLAN TERSEBUT ITULAH YANG MENDAPATKAN BLOODSTONE sebagai perjanjiannya, sejak itu, tahun 6000 an, keempat clan tersebut sepakat untuk MENYATAKAN PERANG ANTARBANGSA. Perang tersebut disebut perang BLOOD SEEKERS.
inilah storylinenya, selamat menikmati!
Tahun 3000,hidup di bumi adalah hidup serba extrim.Sejak abad ke 22,pemanaasan global telah berpacu secepat para dewa,dan jika diukur dari abad ke 21,temperatur bumi telah naik sebanyak 8 derajat,yg mengakibatkan sistem iklim bumi yg sungguh extrim.Hutan Amazon sekarang adalah Gurun Amazon,supervulcan Yellowstone telah meletus,siklus peredaran air laut dunia telah berhenti tanpa jejak,dan manusia telah berperang 5 Perang dunia yg mengakibatkan kematian miliyaran orang.Perang dunia pertama,kedua dan ketiga adalah hanya perang kecil2an jika dilihat dari segi perang keempat dan kelima.Yg kelima adalah yg paling muda dan paling dasyat,menewaskan hampir 65% dari selruh penduduk dunia pada saat itu (4,5 miliyar orang),disebabkan oleh pasukan2 fasist/fanatical hadra yg sekuat Nazi dan pemanipulasian antimatter yg gagal.Karena kesusahan hidup di bumi inilah yg mengakibatkan seluruh manusia melupakan semua masalah di bumi dan malah melihat ke atas,ke angkasa.
Di saat inilah manusia melakukan dan membuat suatu perjanjian universal yg melibatkan perdamaian,penghancuran senjata2 pemusnah massal,pemersatuan dunia,dan memfokuskan 50% dana dunia ke dana riset ilmiah,hampir seluruhnya tentang space travelism dan antimatter.Lalu pada tahun 3000an,riset itu pun akhirnya membuahkan hasil,yaitu kemampuan manusia untuk menjelajahi angkasa luar dan kemampuan manusia untuk membuat sub-anti-matter yg kekuatanya setengah dari antimatter tetapi pembuatanya hanya membutuhkan seperlima dari pembuatan 1 pure antimatter yg bahaya.Karena pengetahuan2 tentang bahaya di luar ankasa,material2 yg super kuat,dan energy source baru yaitu antimatter yg merejenerasi terus menerus yg menghasilkan free energy yg telah diimpikan para ilmuan2 di abad 21.Tetapi populasi manusia sangat melebihi batas populasi di bumi yg semakin kecil tempat yg bisa ditinggali.Para ilmuan pu sadar bahwa manusia perlu menetap di suatu dunia lain,yg lingkungan lebih ramah dari bumi.
Nah,karena itu dibuatkanlah misi perjalanan angkasa yg paling beresiko di sejarah manusia.Yaitu 3 tim penjelajah yg 1 tim berisi 1000 orang.1 tim memiliki 1 kapal yg besarnya sama dengan 1 kota. Pioneer 1 bisa juga disebut tim tumbal yg misinya mengetes apakah mungkin manusia bisa menjelajahi angkasa ke bintang2 lainya.Mereka berisikin 1000 orang Narapidana yg akan dihukum mati dan di luncurkan ke sektor tata surya Zeus.Dan,telah dibuktikan bahwa mereka masih ada disitu juga setelah 50 tahun,dan jumlah mereka bertambah menjadi 3000 orang(karena besarnya kapal).Lalu,PIONEER 2,berisikan orang2 Eropa-Amerika Selatan diluncurkan ke sektor tata surya Hercules,dan setelah 50 tahun,mereka masih ada disitu,Lalu diluncurkanlah PIONEER 3,Kapal berisikan 1000 orang Asia-Afrika-Timur Tengah yg ditujukan ke planet Krakariss,tetapi ada keanehan,setelah perjalanan 10 tahun,mereka menghilang darimata bumi,diduga mereka memasuki suatu wormhole dan melalui perhitungan yg rumit,Kemungkinan besar mereka bertujuan ke Tata Surya Dagon.setelah ribuan tahun,bumi pun melupakan mereka
2000 tahun kemudian, PIONEER 1 melapor telah sampai ke planet yang berkadar 20% oksigen, ber- air, dan bergravitasi lebih ringan dari bumi, yaitu 5,2 N/m2. membuat mereka bergerak lebih ringan dan lebih cepat dari biasanya.
dengan selisih sekitar 70 tahun, PIONEER 2 melapor telah mendarat ke planet yang gersang, dengan memiliki perbandingan antara daratan dan lautan adalah 5 : 1. Dengan selisih sekitar 20 tahun, PIONEER 3 yang memasuki suatu wormhole dan mendarat di suatu planet berkadar normal seperti bumi abad 21, tetapi memiliki suatu zat yang berbahaya, sehingga mereka terkena radiasinya dan merubah kondisi fisik mereka. Planet Krakariss diperkirakan kadar oksigennya 60% dan sedikitnya kadar lainnya yang merugikan, yang tadinya mau diberangkatkan dengan PIONEER 3 dan gagal, maka diberangkatkanlah PIONEER 4 setelah 2000 tahun. Dan sesampainya PIONEER 4 membuahkan kabar baik, kadar oksigennnya lebih dari perkiraan, yaitu 70%. Dan kelompoknya menemukan suatu energy source yang sangat tidak stabil, dan mengeluarkan cairan merah yang berbahaya, suatu batu yang ber energi 3 kali lipat anti matter sebesar genggaman tangan, mereka menamakannya Krakariss Blood Stone( biasa disebut Blood Stone saja). Dan diperkirakan batu itu mempunyai suatu tower batu yang alami, tetapi mempunyai keanehan, yaitu kesamaan antara kedua towernya, karena alami tidak pernah sama persis, pasti ada perbedaan antara kedua tower tersebut. Dan tugas towernya untuk menyeimbangkan ketidak stabilan batu tersebut. Lalu PIONEER 1, PIONEER 2, dan PIONEER 3 berangkat menuju planet krakariss tersebut, tetapi diantara anggota2 tersebut ada yang ditinggal di planet masing2, dan sekarang dijadikan Homeplanet mereka.
di planet krakariss, PIONEER 1, 2 ,dan 3 memutus komunikasi antara bumi - PIONEER. karena dengan kabar baiknya itu, para anggota2 tersebut menjadi egois, ingin mendapatkan energy sourcenya itu untuk kelompoknya sendiri. setelah 20 tahun mereka menetap disitu, terjadinya keanehan, yaitu sedikit2 menimbulkan radiasi yang menyebabkan mutasi fisik. mutasi itu diperkirakan karena Blood stone. diperkirakannya begini, ternyata blood tower itu hanya menyeimbangkan energinya, TIDAK untuk radiasinya, sehingga tetap berbahaya untuk dihuni. setiap radiasinya memperkuat tenaganya, misalnya, PIONEER 1 memiliki kecepatan pada lari karena gravitasinya, sehingga mutasinya mempercepat kaki tetapi memperlemah kekuatan fisiknya. PIONEER berisi tahanan hukuman mati tersebut menamakan kelompoknya BANDITS. PIONEER 2 yang terbiasa dengan kondisi homeplanetnya yang berkadar air sedikit, sehingga suhu tidak terkendali, sehingga mutasinya memperkuat daya tahan penyakit, menambah hormon pertumbuhan yang berlebihan, sehingga gigantisme, dan menambah kekuatan tubuh, tetapi agak idiot, mereka menamakan kelompoknya MOHRUS. PIONEER 3, tidak terkena mutasi karna sudah terkena mutasi di homeplanetnya yang menambah ketajaman mata, dan mempunyai daya tahan tubuh yang sangat besar, lebih besar dari MOHRUS, tetapi mereka mendapat masalah, yaitu pada saat diperhunikannya planet Krakariss, suatu makhluk asing yang berteknologi mendatangi planet krakariss dan memperbudak wilayah PIONEER 3, alien tersebut bernama DRAMURIAN, dan budak2 tersebut sebagian besar dijadikan budak perang yang untuk merebut Blood stone, budak perang tersebut dinamakan DATHURIAN. Dan PIONEER 4, diperintahkan oleh bumi atau disebut TERRA, untuk merebut blood stone tersebut untuk kepentingan penelitian di terra, dan perjanjiannya mereka akan mendapatkan 1/2 bagian blood stone nya. Dan PIONEER 4 diangkat menjadi tentara yang bernama TERRAN KRAKARISS (disebut TERRAN saja). Setelah itu, keempat Clan tersebut, membuat perjanjian untuk menyatakan perang. CLAN SIAPA SAJA, YANG MEMENANGI PERANG, MAKA CLAN TERSEBUT ITULAH YANG MENDAPATKAN BLOODSTONE sebagai perjanjiannya, sejak itu, tahun 6000 an, keempat clan tersebut sepakat untuk MENYATAKAN PERANG ANTARBANGSA. Perang tersebut disebut perang BLOOD SEEKERS.
Sabtu, 26 Desember 2009
How To Make Your Own Fallout 3 Helmet
Nice, isn't it?
Step 1: Materials
Ok, theese are the materials and programs you need:- Pepakura Designer 3: www.tamasoft.co.jp/pepakura-en/
- Helmet.pdo: www.mediafire.com/
- Thick paper (Can be buyed at any Hardware store)
- Fiberglass resin (Can be buyed at any marine shop)
- Fiberglass mat (Can also be buyed at any marine shop)
- Bondo Body Filler (Can be buyed at any Hardware store)
- Dremel Multitool
- Spray paint (Can be buyed at any Hardware store)
- Gloves (Can be buyed at any Hardware store)
- Safety gasmask (Can be buyed at any Hardware store)
Step 2 :Pepakura Progress
Pepakura Designer 3
Pepakura Designer allows you to create a development for paper craft easily from 3D data used in 3D CG software. You can load a 3d image and make adjustments (not featured in this tutorial) or you can load already saved files from Pepakura and print them out to assemble a 3d object using only paper!
The .pdo files that are shared here are saved to be printed on A4 paper. This is a universal standard size paper, however it is not what is typically used here in the United States. To use 8 1/2" x 11" paper (Letter) or 8 1/2" x 14" paper (Legal) we will have to change the settings and manipulate the images to make sure they fit on the paper. But don't worry, we will cover that in this tutorial. ;-)
If you are planning on using the print-outs from Pepakura to place onto another medium (such as cardboard or foam board) you can easily print the designs on regular computer or copy paper. However, if you plan on using your printed pieces of paper as your main structure, I recommend printing on card stock paper. You can find bundles of card stock at just about any paper store, or for a much easier (and probably cheaper) find, head over to your local Wal-Mart.
Step 3Cutting and Folding
This is a tutorial on how to fold the lines on Pepakura correctly and clean.
Cut only the Solid lines!!! do not cut the dotted ones!!
Picture coming soon
1. Your going to need 2 Pens and a ruler. Make sure that the 2 pens are each different colors.)
2. You must assign the pens to a certain fold. (remember you must keep them the same through out the procedure)
Example:
Red Pen = Valley fold lines (--- - --- - --- - --- -)
Blue Pen = Mountain fold lines (- - - - - - - - - - - -)
3. Cut out the piece you are going to be folding.
Cut only the Solid lines!!! do not cut the dotted ones!!
Picture coming soon
1. Your going to need 2 Pens and a ruler. Make sure that the 2 pens are each different colors.)
2. You must assign the pens to a certain fold. (remember you must keep them the same through out the procedure)
Example:
Red Pen = Valley fold lines (--- - --- - --- - --- -)
Blue Pen = Mountain fold lines (- - - - - - - - - - - -)
3. Cut out the piece you are going to be folding.
4. Set up the Ruler so it is parallel to the line you are going to score, make sure that it is a bit close.
5. Then your going to want take the pen you assigned to valley fold or mountain fold and go over the line 3 or 4 times pressing semi hard with the ruler as a guide to keeping the pen straight and on the original line.
6. Once you have done that you may fold the paper accordingly to come out as a nice clean fold.
Yes this may add more time to the making of your helmet, but in the end you are stunned with a nice looking piece.
5. Then your going to want take the pen you assigned to valley fold or mountain fold and go over the line 3 or 4 times pressing semi hard with the ruler as a guide to keeping the pen straight and on the original line.
6. Once you have done that you may fold the paper accordingly to come out as a nice clean fold.
Yes this may add more time to the making of your helmet, but in the end you are stunned with a nice looking piece.
Step 3: putting it all together.
You will need your choice of glue. I reccomend hot glue but this may cause burns. Normal elmers glue dries way too slow so it is not recommended.
When putting peices together its important to know how they go together. For example
1 will go to 1
2 will go to 2
3 will go to 3
Anything will go with another number that is the same. Put a dab of glue on the tab and secure it to its corrosponding edge.
You will need your choice of glue. I reccomend hot glue but this may cause burns. Normal elmers glue dries way too slow so it is not recommended.
When putting peices together its important to know how they go together. For example
1 will go to 1
2 will go to 2
3 will go to 3
Anything will go with another number that is the same. Put a dab of glue on the tab and secure it to its corrosponding edge.
step 5Resining
----------Resining with "Resin"----------
Get Materials Together
Materials:
- Resin
- Liquid hardener
- Brush(s), reallys it's personal preferance
- Container(top of resin can)
- Tinfoil(to put inside container so it can be reused)
- Mixing stick or the like
- Knife/Scissors
Get Materials Together
Materials:
- Resin
- Liquid hardener
- Brush(s), reallys it's personal preferance
- Container(top of resin can)
- Tinfoil(to put inside container so it can be reused)
- Mixing stick or the like
- Knife/Scissors
Before you jump into any thing you first want to make sure you're in a well ventilated area and you have a large enough work area for the piece you will be working on.
Step 1) The first thing you need to do is clean the surface of the object that you will be resining. Make sure it is free of debris and foreign objects.
Step 1) The first thing you need to do is clean the surface of the object that you will be resining. Make sure it is free of debris and foreign objects.
Step 2) Next add the correct amount of Liquid Hardener. (READ DIRECTIONS!! Too much will cause the resin to harden within a couple minuets.)
Mix the two together for 10-15seconds and remove stiring stick.(wipe off excess resin on stick.)
>>>WARNING: Never mix a new batch with an old one, the onld will start to harden the new one instantly<<<
Step 3) Now dip your brush into the resin and load it up with a moderate amount, not dripping off. If there is excess just wipe it on the edge of the container so that it flows back in.
Apply the resin to your piece starting at the seams first and the working your way around. You start at the seam to make sure it gets a healty amount of resin to give it support.
Mix the two together for 10-15seconds and remove stiring stick.(wipe off excess resin on stick.)
>>>WARNING: Never mix a new batch with an old one, the onld will start to harden the new one instantly<<<
Step 3) Now dip your brush into the resin and load it up with a moderate amount, not dripping off. If there is excess just wipe it on the edge of the container so that it flows back in.
Apply the resin to your piece starting at the seams first and the working your way around. You start at the seam to make sure it gets a healty amount of resin to give it support.
Remember to work quickly as the clock is against you. After you have used the desired amount of resin on the piece let it dry.
step 6Fiberglassing
FIBRE GLASSING
***Take the usual precautions as above; work in a well ventilated area, cover your work space, wear a respirator, and so on.
Now after that has been done get your tools and materials ready(again)
***Take the usual precautions as above; work in a well ventilated area, cover your work space, wear a respirator, and so on.
Now after that has been done get your tools and materials ready(again)
Part 1) After you have your tools and materials ready go ahead and lay out your fibre glass sheet
Part 2) Next you want to cut your sheet in half
Part 3) After you have your sheet cut in 2 fold up one half and put it to the side for the time being.
Part 4) With the half sheet you have in front of you cut it in half again, then cut half of that in half.
Part 5) Now it is time to cut the sheets into strips for easier workability.
Try and aim for strips roughly 3" wide.
the long ones should be approximately 3"x14" and the short ones 3"x8"
After that stack them together
Part 6) Now take your piece (helmet in this case) and set it on your table.
Use some tape to make any nessecary adjustments
Part 2) Next you want to cut your sheet in half
Part 3) After you have your sheet cut in 2 fold up one half and put it to the side for the time being.
Part 4) With the half sheet you have in front of you cut it in half again, then cut half of that in half.
Part 5) Now it is time to cut the sheets into strips for easier workability.
Try and aim for strips roughly 3" wide.
the long ones should be approximately 3"x14" and the short ones 3"x8"
After that stack them together
Part 6) Now take your piece (helmet in this case) and set it on your table.
Use some tape to make any nessecary adjustments
step 7Detailing
How to mix body filler:
1) Get a FLAT clean surface made of plastic or metal (plywood is not acceptable).
2) Scoop a 4" diameter dollop of filler onto the surface.
3) Squeeze out a 1-3" line of hardener. A 1" line is what is called mixing the putty "cold". This means you will have more time to work with it, but it takes considerably longer to dry. If you use too little hardener it will never dry and will always be sticky. If you use a full 3" line of hardener you will be mixing it "hot" This will give you quick drying times and a very hard finish. Unfortunately it will be more brittle than mixing it cold. 2" is the median and is what I would recommend.
Using a putty knife, fold the hardener vigorously into the putty so that it is mixed evenly. Don't take too long doing this or the filler will begin to harden while you are mixing.
Now carefully apply a generous amount of putty to the area you are trying to fill or shape.
When the putty is hard but can still be dented by your fingernail use a small Sureform file to roughly shape the putty. You can also use some 80 grit sandpaper for this.
Now allow the putty to cure completely. When cured it will be hard like plastic, and will be giving off no heat.
Now do your final forming with some 360 grit sandpaper, elbow grease and finish it up with 1200 grit for painting.
Step 8 : Painting your helmet
Choose the color as same as in the game. Then paint it..
Kalo mau terjemahan ke indo jgn harap haha gw capek
kalo mau translate sendiri
image not found
Anti - Matter
For other uses, see
In particle physics, antimatter is the extension of the concept of the antiparticle to matter, where antimatter is composed of antiparticles in the same way that normal matter is composed of particles. For example, an antielectron (a positron, an electron with a positive charge) and an antiproton (a proton with a negative charge) could form an antihydrogen atom in the same way that an electron and a proton form a normal matter hydrogen atom. Furthermore, mixing matter and antimatter would lead to the annihilation of both in the same way that mixing antiparticles and particles does, thus giving rise to high-energy photons (gamma rays) or other particle–antiparticle pairs.
There is considerable speculation as to why the observable universe is apparently almost entirely matter, whether there exist other places that are almost entirely antimatter instead, and what might be possible if antimatter could be harnessed, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the greatest unsolved problems in physics. The process by which this asymmetry between particles and antiparticles developed is called baryogenesis.
History of the concept
Negative matter has appeared in the past in several, now abandoned, theories of matter. Using the once popular vortex theory of gravity the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Another old theory (1880s and 1890s) is due to Karl Pearson who proposed "squirts" (sources) and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter, a term which Pearson is credited with coining. Pearson's theory also required a fourth dimension for the aether to flow from and into.[1]
The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898,[2] in which he coined the term. He hypothesized antiatoms, whole antimatter solar systems and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.[3]
The modern theory of antimatter begins with a paper[4] by Paul Dirac in 1928 who realised that his relativistic version of the Schrödinger wave equation for electrons was predicting the possibility of anti-electrons. These were later discovered by Carl Anderson and named positrons. Although Dirac did not himself use the term antimatter, its use follows on naturally enough from anti-electron, anti-proton etc.[5]
Notation
One way to denote an antiparticle is by adding a bar (or macron) over the particle's symbol. For example, the proton and antiproton are denoted as p and p, respectively. The same rule applies if one were to address a particle by its constituent components. A proton is made up of u u d quarks, so an antiproton must therefore be formed from u u d antiquarks. Another convention is to distinguish particles by their electric charge. Thus, the electron and positron are denoted simply as e− and e+ respectively.
Origin and asymmetry
Almost all matter observable from the Earth seems to be made of matter rather than antimatter. Many scientists believe that this preponderance of matter over antimatter (known as baryon asymmetry) is the result of an imbalance in the production of matter and antimatter particles in the early universe, in a process called baryogenesis. If antimatter-dominated regions of space existed, the gamma rays produced in annihilation reactions along the boundary between matter and antimatter regions would be detectable. The amount of matter presently observable in the universe only requires an imbalance in the early universe on the order of one extra matter particle per billion matter-antimatter particle pairs.[6]
Antiparticles are created everywhere in the universe where high-energy particle collisions take place. High-energy cosmic rays impacting Earth's atmosphere (or any other matter in the solar system) produce minute quantities of antimatter in the resulting particle jets, which are immediately annihilated by contact with nearby matter. It may similarly be produced in regions like the center of the Milky Way Galaxy and other galaxies, where very energetic celestial events occur (principally the interaction of relativistic jets with the interstellar medium). The presence of the resulting antimatter is detectable by the gamma rays produced when positrons annihilate with nearby matter. The gamma rays' frequency and wavelength indicate that each carries 511 keV of energy (i.e. the rest mass of an electron or positron multiplied by c2).
Recent observations by the European Space Agency's INTEGRAL (International Gamma-Ray Astrophysics Laboratory) satellite may explain the origin of a giant cloud of antimatter surrounding the galactic center. The observations show that the cloud is asymmetrical and matches the pattern of X-ray binaries, binary star systems containing black holes or neutron stars, mostly on one side of the galactic center. While the mechanism is not fully understood, it is likely to involve the production of electron-positron pairs, as ordinary matter gains tremendous energy while falling into a stellar remnant.[7][8]
Antimatter may exist in relatively large amounts in far away galaxies due to cosmic inflation in the primordial time of the universe. NASA is trying to determine if this is true by looking for X-ray and gamma ray signatures of annihilation events in colliding superclusters.[9]
Artificial production
Antiparticles are also produced in any environment with a sufficiently high temperature (mean particle energy greater than the pair production threshold). During the period of baryogenesis, when the universe was extremely hot and dense, matter and antimatter were continually produced and annihilated. The presence of remaining matter, and absence of detectable remaining antimatter,[10] also called baryon asymmetry, is attributed to violation of the CP-symmetry relating matter and antimatter. The exact mechanism of this violation during baryogenesis remains a mystery.
Positrons are also produced via the radioactive beta+ decay, but this mechanism can be considered as "natural" as well as "artificial".
Antihydrogen
Main article: Antihydrogen
In 1995 CERN announced that it had successfully brought into existence nine antihydrogen atoms by implementing the SLAC/Fermilab concept during the PS210 experiment. The experiment was performed using the Low Energy Antiproton Ring (LEAR), and was led by Walter Oelert and Mario Macri. Fermilab soon confirmed the CERN findings by producing approximately 100 antihydrogen atoms at their facilities.
The antihydrogen atoms created during PS210, and subsequent experiments (at both CERN and Fermilab) were extremely energetic ("hot") and were not well suited to study. To resolve this hurdle, and to gain a better understanding of antihydrogen, two collaborations were formed in the late 1990s—ATHENA and ATRAP. In 2005, ATHENA disbanded and some of the former members (along with others) formed the ALPHA Collaboration, which is also situated at CERN. The primary goal of these collaborations is the creation of less energetic ("cold") antihydrogen, better suited to study.
In 1999 CERN activated the Antiproton Decelerator, a device capable of decelerating antiprotons from 3.5 GeV to 5.3 MeV—still too "hot" to produce study-effective antihydrogen, but a huge leap forward.
In late 2002 the ATHENA project announced that they had created the world's first "cold" antihydrogen. The antiprotons used in the experiment were cooled sufficiently by decelerating them (using the Antiproton Decelerator), passing them through a thin sheet of foil, and finally capturing them in a Penning trap. The antiprotons also underwent stochastic cooling at several stages during the process.
The ATHENA team's antiproton cooling process is effective, but highly inefficient. Approximately 25 million antiprotons leave the Antiproton Decelerator; roughly 10 thousand make it to the Penning trap, which is about 1/2500 or 0.04% of the original amount.
In early 2004 ATHENA researchers released data on a new method of creating low-energy antihydrogen. The technique involves slowing antiprotons using the Antiproton Decelerator, and injecting them into a Penning trap (specifically a Penning-Malmberg trap[citation needed]). Once trapped the antiprotons are mixed with electrons that have been cooled to an energy potential significantly less than the antiprotons; the resulting Coulomb collisions cool the antiprotons while warming the electrons until the particles reach an equilibrium of approximately 4 K.
While the antiprotons are being cooled in the first trap, a small cloud of positron plasma is injected into a second trap (the mixing trap). Exciting the resonance of the mixing trap’s confinement fields can control the temperature of the positron plasma; but the procedure is more effective when the plasma is in thermal equilibrium with the trap’s environment. The positron plasma cloud is generated in a positron accumulator prior to injection; the source of the positrons is usually radioactive sodium.
Once the antiprotons are sufficiently cooled, the antiproton-electron mixture is transferred into the mixing trap (containing the positrons). The electrons are subsequently removed by a series of fast pulses in the mixing trap's electrical field. When the antiprotons reach the positron plasma further Coulomb collisions occur, resulting in further cooling of the antiprotons. When the positrons and antiprotons approach thermal equilibrium antihydrogen atoms begin to form. Being electrically neutral the antihydrogen atoms are not affected by the trap and can leave the confinement fields.
Utilizing this method, ATHENA researchers predict they will be able to create up to 100 antihydrogen atoms per operational second.
ATHENA and ATRAP are now seeking to further cool the antihydrogen atoms by subjecting them to an inhomogeneous field. While antihydrogen atoms are electrically neutral, their spin produces magnetic moments. These magnetic moments vary depending on the spin direction of the atom, and can be deflected by inhomogeneous fields regardless of electrical charge.
The biggest limiting factor in the production of antimatter is the availability of antiprotons. Recent data released by CERN states that when fully operational their facilities are capable of producing 107 antiprotons per second.[citation needed] Assuming an optimal conversion of antiprotons to antihydrogen, it would take two billion years to produce 1 gram or 1 mole of antihydrogen (approximately 6.02×1023 atoms of antihydrogen). Another limiting factor to antimatter production is storage. As stated above there is no known way to effectively store antihydrogen. The ATHENA project has managed to keep antihydrogen atoms from annihilation for tens of seconds — just enough time to briefly study their behavior.
Hydrogen atoms are the simplest objects that can be considered as "matter" rather than as just particles.
Simultaneous trapping of antiprotons and antielectrons was reported[11] and the cooling is achieved;[12] there are patents on the way of production of antihydrogen.[13]
Antihelium
A small number of nuclei of the antihelium isotope, \scriptstyle{\mathrm{^3\overline{He}}} have been created in collision experiments.[14]
Positrons
Main article: Positrons
Positrons were reported[15] in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove ionized electrons through a millimeter radius gold target's nuclei, which caused the incoming electrons to emit energy quanta, that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory.
Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.[16]
Cost
Antimatter is said to be the most costly substance in existence, with an estimated cost of $25 billion per gram for positrons[17], and $62.5 trillion per gram for antihydrogen.[18] This is because production is difficult (only a few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for the other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss Francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions).[19]
Several NASA Institute for Advanced Concepts-funded studies are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belts of Earth, and ultimately, the belts of gas giants like Jupiter, hopefully at a lower cost per gram.[20]
Medical
Antimatter-matter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and neutrinos are also given off). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use.
Fuel
In antimatter-matter collisions resulting in photon emission, the entire rest mass of the particles is converted to kinetic energy. The energy per unit mass (9×1016 J/kg) is about 10 orders of magnitude greater than chemical energy (compared to TNT at 4.2×106 J/kg, and formation of water at 1.56×107 J/kg), about 4 orders of magnitude greater than nuclear energy that can be liberated today using nuclear fission (about 40 MeV per 238U nucleus transmuted to Lead, or 1.5×1013 J/kg), and about 2 orders of magnitude greater than the best possible from fusion (about 6.3×1014 J/kg for the proton-proton chain). The reaction of 1 kg of antimatter with 1 kg of matter would produce 1.8×1017 J (180 petajoules) of energy (by the mass-energy equivalence formula E = mc²), or the rough equivalent of 43 megatons of TNT. For comparison, Tsar Bomba, the largest nuclear weapon ever detonated, reacted an estimated yield of 50 megatons, which required the use of hundreds of kilograms of fissile material (Uranium/Plutonium).
Not all of that energy can be utilized by any realistic propulsion technology, because as much as 50% of energy produced in reactions between nucleons and antinucleons is carried away by neutrinos in these applications, so, for all intents and purposes, it can be considered lost.[21]
Antimatter rocketry ideas, such as the redshift rocket, propose the use of antimatter as fuel for interplanetary travel or possibly interstellar travel. Since the energy density of antimatter is vastly higher than conventional fuels, the thrust to weight equation for such craft would be very different from conventional spacecraft.
The scarcity of antimatter means that it is not readily available to be used as fuel, although it could be used in antimatter catalyzed nuclear pulse propulsion for space applications. Generating a single antiproton is immensely difficult and requires particle accelerators and vast amounts of energy—millions of times more than is released after it is annihilated with ordinary matter due to inefficiencies in the process. Known methods of producing antimatter from energy also produce an equal amount of normal matter, so the theoretical limit is that half of the input energy is converted to antimatter. Counterbalancing this, when antimatter annihilates with ordinary matter, energy equal to twice the mass of the antimatter is liberated—so energy storage in the form of antimatter could (in theory) be 100% efficient.
For more regular (earthly) applications however (e.g. regular transport, use in portable generators, powering of cities, ...), artificially created antimatter is not a suitable energy carrier, despite its high energy density, because the process of creating antimatter involves a large amount of wasted energy and is extremely inefficient. According to CERN, only one part in ten billion (10−10) of the energy invested in the production of antimatter particles can be subsequently retrieved.[22]
Antimatter production is currently very limited, but has been growing at a nearly geometric rate since the discovery of the first antiproton in 1955 by Segrè and Chamberlain.[citation needed] The current antimatter production rate is between 1 and 10 nanograms per year, and this is expected to increase to between 3 and 30 nanograms per year by 2015 or 2020 with new superconducting linear accelerator facilities at CERN and Fermilab.
Some researchers claim that with current technology, it is possible to obtain antimatter for US$25 million per gram by optimizing the collision and collection parameters (given current electricity generation costs). Antimatter production costs, in mass production, are almost linearly tied in with electricity costs, so economical pure-antimatter thrust applications are unlikely to come online without the advent of such technologies as deuterium-tritium fusion power (assuming that such a power source actually would prove to be cheap).
Many experts, however, dispute these claims as being far too optimistic by many orders of magnitude. They point out that in 2004, the annual production of antiprotons at CERN was several picograms at a cost of $20 million. This means to produce 1 gram of antimatter, CERN would need to spend 100 quadrillion dollars and run the antimatter factory for 100 billion years.
Storage is another problem, as antiprotons are negatively charged and repel against each other, so that they cannot be concentrated in a small volume. Plasma oscillations in the charged cloud of antiprotons can cause instabilities that drive antiprotons out of the storage trap. For these reasons, to date only a few million antiprotons have been stored simultaneously in a magnetic trap, which corresponds to much less than a femtogram. Antihydrogen atoms or molecules are neutral so in principle they do not suffer the plasma problems of antiprotons described above. But cold antihydrogen is far more difficult to produce than antiprotons, and so far not a single antihydrogen atom has been trapped in a magnetic field.
One researcher of the CERN laboratories, which produces antimatter regularly, said:
If we could assemble all of the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.[23]
In particle physics, antimatter is the extension of the concept of the antiparticle to matter, where antimatter is composed of antiparticles in the same way that normal matter is composed of particles. For example, an antielectron (a positron, an electron with a positive charge) and an antiproton (a proton with a negative charge) could form an antihydrogen atom in the same way that an electron and a proton form a normal matter hydrogen atom. Furthermore, mixing matter and antimatter would lead to the annihilation of both in the same way that mixing antiparticles and particles does, thus giving rise to high-energy photons (gamma rays) or other particle–antiparticle pairs.
There is considerable speculation as to why the observable universe is apparently almost entirely matter, whether there exist other places that are almost entirely antimatter instead, and what might be possible if antimatter could be harnessed, but at this time the apparent asymmetry of matter and antimatter in the visible universe is one of the greatest unsolved problems in physics. The process by which this asymmetry between particles and antiparticles developed is called baryogenesis.
History of the concept
Negative matter has appeared in the past in several, now abandoned, theories of matter. Using the once popular vortex theory of gravity the possibility of matter with negative gravity was discussed by William Hicks in the 1880s. Another old theory (1880s and 1890s) is due to Karl Pearson who proposed "squirts" (sources) and sinks of the flow of aether. The squirts represented normal matter and the sinks represented negative matter, a term which Pearson is credited with coining. Pearson's theory also required a fourth dimension for the aether to flow from and into.[1]
The term antimatter was first used by Arthur Schuster in two rather whimsical letters to Nature in 1898,[2] in which he coined the term. He hypothesized antiatoms, whole antimatter solar systems and discussed the possibility of matter and antimatter annihilating each other. Schuster's ideas were not a serious theoretical proposal, merely speculation, and like the previous ideas, differed from the modern concept of antimatter in that it possessed negative gravity.[3]
The modern theory of antimatter begins with a paper[4] by Paul Dirac in 1928 who realised that his relativistic version of the Schrödinger wave equation for electrons was predicting the possibility of anti-electrons. These were later discovered by Carl Anderson and named positrons. Although Dirac did not himself use the term antimatter, its use follows on naturally enough from anti-electron, anti-proton etc.[5]
Notation
One way to denote an antiparticle is by adding a bar (or macron) over the particle's symbol. For example, the proton and antiproton are denoted as p and p, respectively. The same rule applies if one were to address a particle by its constituent components. A proton is made up of u u d quarks, so an antiproton must therefore be formed from u u d antiquarks. Another convention is to distinguish particles by their electric charge. Thus, the electron and positron are denoted simply as e− and e+ respectively.
Origin and asymmetry
Almost all matter observable from the Earth seems to be made of matter rather than antimatter. Many scientists believe that this preponderance of matter over antimatter (known as baryon asymmetry) is the result of an imbalance in the production of matter and antimatter particles in the early universe, in a process called baryogenesis. If antimatter-dominated regions of space existed, the gamma rays produced in annihilation reactions along the boundary between matter and antimatter regions would be detectable. The amount of matter presently observable in the universe only requires an imbalance in the early universe on the order of one extra matter particle per billion matter-antimatter particle pairs.[6]
Antiparticles are created everywhere in the universe where high-energy particle collisions take place. High-energy cosmic rays impacting Earth's atmosphere (or any other matter in the solar system) produce minute quantities of antimatter in the resulting particle jets, which are immediately annihilated by contact with nearby matter. It may similarly be produced in regions like the center of the Milky Way Galaxy and other galaxies, where very energetic celestial events occur (principally the interaction of relativistic jets with the interstellar medium). The presence of the resulting antimatter is detectable by the gamma rays produced when positrons annihilate with nearby matter. The gamma rays' frequency and wavelength indicate that each carries 511 keV of energy (i.e. the rest mass of an electron or positron multiplied by c2).
Recent observations by the European Space Agency's INTEGRAL (International Gamma-Ray Astrophysics Laboratory) satellite may explain the origin of a giant cloud of antimatter surrounding the galactic center. The observations show that the cloud is asymmetrical and matches the pattern of X-ray binaries, binary star systems containing black holes or neutron stars, mostly on one side of the galactic center. While the mechanism is not fully understood, it is likely to involve the production of electron-positron pairs, as ordinary matter gains tremendous energy while falling into a stellar remnant.[7][8]
Antimatter may exist in relatively large amounts in far away galaxies due to cosmic inflation in the primordial time of the universe. NASA is trying to determine if this is true by looking for X-ray and gamma ray signatures of annihilation events in colliding superclusters.[9]
Artificial production
Antiparticles are also produced in any environment with a sufficiently high temperature (mean particle energy greater than the pair production threshold). During the period of baryogenesis, when the universe was extremely hot and dense, matter and antimatter were continually produced and annihilated. The presence of remaining matter, and absence of detectable remaining antimatter,[10] also called baryon asymmetry, is attributed to violation of the CP-symmetry relating matter and antimatter. The exact mechanism of this violation during baryogenesis remains a mystery.
Positrons are also produced via the radioactive beta+ decay, but this mechanism can be considered as "natural" as well as "artificial".
Antihydrogen
Main article: Antihydrogen
In 1995 CERN announced that it had successfully brought into existence nine antihydrogen atoms by implementing the SLAC/Fermilab concept during the PS210 experiment. The experiment was performed using the Low Energy Antiproton Ring (LEAR), and was led by Walter Oelert and Mario Macri. Fermilab soon confirmed the CERN findings by producing approximately 100 antihydrogen atoms at their facilities.
The antihydrogen atoms created during PS210, and subsequent experiments (at both CERN and Fermilab) were extremely energetic ("hot") and were not well suited to study. To resolve this hurdle, and to gain a better understanding of antihydrogen, two collaborations were formed in the late 1990s—ATHENA and ATRAP. In 2005, ATHENA disbanded and some of the former members (along with others) formed the ALPHA Collaboration, which is also situated at CERN. The primary goal of these collaborations is the creation of less energetic ("cold") antihydrogen, better suited to study.
In 1999 CERN activated the Antiproton Decelerator, a device capable of decelerating antiprotons from 3.5 GeV to 5.3 MeV—still too "hot" to produce study-effective antihydrogen, but a huge leap forward.
In late 2002 the ATHENA project announced that they had created the world's first "cold" antihydrogen. The antiprotons used in the experiment were cooled sufficiently by decelerating them (using the Antiproton Decelerator), passing them through a thin sheet of foil, and finally capturing them in a Penning trap. The antiprotons also underwent stochastic cooling at several stages during the process.
The ATHENA team's antiproton cooling process is effective, but highly inefficient. Approximately 25 million antiprotons leave the Antiproton Decelerator; roughly 10 thousand make it to the Penning trap, which is about 1/2500 or 0.04% of the original amount.
In early 2004 ATHENA researchers released data on a new method of creating low-energy antihydrogen. The technique involves slowing antiprotons using the Antiproton Decelerator, and injecting them into a Penning trap (specifically a Penning-Malmberg trap[citation needed]). Once trapped the antiprotons are mixed with electrons that have been cooled to an energy potential significantly less than the antiprotons; the resulting Coulomb collisions cool the antiprotons while warming the electrons until the particles reach an equilibrium of approximately 4 K.
While the antiprotons are being cooled in the first trap, a small cloud of positron plasma is injected into a second trap (the mixing trap). Exciting the resonance of the mixing trap’s confinement fields can control the temperature of the positron plasma; but the procedure is more effective when the plasma is in thermal equilibrium with the trap’s environment. The positron plasma cloud is generated in a positron accumulator prior to injection; the source of the positrons is usually radioactive sodium.
Once the antiprotons are sufficiently cooled, the antiproton-electron mixture is transferred into the mixing trap (containing the positrons). The electrons are subsequently removed by a series of fast pulses in the mixing trap's electrical field. When the antiprotons reach the positron plasma further Coulomb collisions occur, resulting in further cooling of the antiprotons. When the positrons and antiprotons approach thermal equilibrium antihydrogen atoms begin to form. Being electrically neutral the antihydrogen atoms are not affected by the trap and can leave the confinement fields.
Utilizing this method, ATHENA researchers predict they will be able to create up to 100 antihydrogen atoms per operational second.
ATHENA and ATRAP are now seeking to further cool the antihydrogen atoms by subjecting them to an inhomogeneous field. While antihydrogen atoms are electrically neutral, their spin produces magnetic moments. These magnetic moments vary depending on the spin direction of the atom, and can be deflected by inhomogeneous fields regardless of electrical charge.
The biggest limiting factor in the production of antimatter is the availability of antiprotons. Recent data released by CERN states that when fully operational their facilities are capable of producing 107 antiprotons per second.[citation needed] Assuming an optimal conversion of antiprotons to antihydrogen, it would take two billion years to produce 1 gram or 1 mole of antihydrogen (approximately 6.02×1023 atoms of antihydrogen). Another limiting factor to antimatter production is storage. As stated above there is no known way to effectively store antihydrogen. The ATHENA project has managed to keep antihydrogen atoms from annihilation for tens of seconds — just enough time to briefly study their behavior.
Hydrogen atoms are the simplest objects that can be considered as "matter" rather than as just particles.
Simultaneous trapping of antiprotons and antielectrons was reported[11] and the cooling is achieved;[12] there are patents on the way of production of antihydrogen.[13]
Antihelium
A small number of nuclei of the antihelium isotope, \scriptstyle{\mathrm{^3\overline{He}}} have been created in collision experiments.[14]
Positrons
Main article: Positrons
Positrons were reported[15] in November 2008 to have been generated by Lawrence Livermore National Laboratory in larger numbers than by any previous synthetic process. A laser drove ionized electrons through a millimeter radius gold target's nuclei, which caused the incoming electrons to emit energy quanta, that decayed into both matter and antimatter. Positrons were detected at a higher rate and in greater density than ever previously detected in a laboratory.
Previous experiments made smaller quantities of positrons using lasers and paper-thin targets; however, new simulations showed that short, ultra-intense lasers and millimeter-thick gold are a far more effective source.[16]
Cost
Antimatter is said to be the most costly substance in existence, with an estimated cost of $25 billion per gram for positrons[17], and $62.5 trillion per gram for antihydrogen.[18] This is because production is difficult (only a few antiprotons are produced in reactions in particle accelerators), and because there is higher demand for the other uses of particle accelerators. According to CERN, it has cost a few hundred million Swiss Francs to produce about 1 billionth of a gram (the amount used so far for particle/antiparticle collisions).[19]
Several NASA Institute for Advanced Concepts-funded studies are exploring whether it might be possible to use magnetic scoops to collect the antimatter that occurs naturally in the Van Allen belts of Earth, and ultimately, the belts of gas giants like Jupiter, hopefully at a lower cost per gram.[20]
Medical
Antimatter-matter reactions have practical applications in medical imaging, such as positron emission tomography (PET). In positive beta decay, a nuclide loses surplus positive charge by emitting a positron (in the same event, a proton becomes a neutron, and neutrinos are also given off). Nuclides with surplus positive charge are easily made in a cyclotron and are widely generated for medical use.
Fuel
In antimatter-matter collisions resulting in photon emission, the entire rest mass of the particles is converted to kinetic energy. The energy per unit mass (9×1016 J/kg) is about 10 orders of magnitude greater than chemical energy (compared to TNT at 4.2×106 J/kg, and formation of water at 1.56×107 J/kg), about 4 orders of magnitude greater than nuclear energy that can be liberated today using nuclear fission (about 40 MeV per 238U nucleus transmuted to Lead, or 1.5×1013 J/kg), and about 2 orders of magnitude greater than the best possible from fusion (about 6.3×1014 J/kg for the proton-proton chain). The reaction of 1 kg of antimatter with 1 kg of matter would produce 1.8×1017 J (180 petajoules) of energy (by the mass-energy equivalence formula E = mc²), or the rough equivalent of 43 megatons of TNT. For comparison, Tsar Bomba, the largest nuclear weapon ever detonated, reacted an estimated yield of 50 megatons, which required the use of hundreds of kilograms of fissile material (Uranium/Plutonium).
Not all of that energy can be utilized by any realistic propulsion technology, because as much as 50% of energy produced in reactions between nucleons and antinucleons is carried away by neutrinos in these applications, so, for all intents and purposes, it can be considered lost.[21]
Antimatter rocketry ideas, such as the redshift rocket, propose the use of antimatter as fuel for interplanetary travel or possibly interstellar travel. Since the energy density of antimatter is vastly higher than conventional fuels, the thrust to weight equation for such craft would be very different from conventional spacecraft.
The scarcity of antimatter means that it is not readily available to be used as fuel, although it could be used in antimatter catalyzed nuclear pulse propulsion for space applications. Generating a single antiproton is immensely difficult and requires particle accelerators and vast amounts of energy—millions of times more than is released after it is annihilated with ordinary matter due to inefficiencies in the process. Known methods of producing antimatter from energy also produce an equal amount of normal matter, so the theoretical limit is that half of the input energy is converted to antimatter. Counterbalancing this, when antimatter annihilates with ordinary matter, energy equal to twice the mass of the antimatter is liberated—so energy storage in the form of antimatter could (in theory) be 100% efficient.
For more regular (earthly) applications however (e.g. regular transport, use in portable generators, powering of cities, ...), artificially created antimatter is not a suitable energy carrier, despite its high energy density, because the process of creating antimatter involves a large amount of wasted energy and is extremely inefficient. According to CERN, only one part in ten billion (10−10) of the energy invested in the production of antimatter particles can be subsequently retrieved.[22]
Antimatter production is currently very limited, but has been growing at a nearly geometric rate since the discovery of the first antiproton in 1955 by Segrè and Chamberlain.[citation needed] The current antimatter production rate is between 1 and 10 nanograms per year, and this is expected to increase to between 3 and 30 nanograms per year by 2015 or 2020 with new superconducting linear accelerator facilities at CERN and Fermilab.
Some researchers claim that with current technology, it is possible to obtain antimatter for US$25 million per gram by optimizing the collision and collection parameters (given current electricity generation costs). Antimatter production costs, in mass production, are almost linearly tied in with electricity costs, so economical pure-antimatter thrust applications are unlikely to come online without the advent of such technologies as deuterium-tritium fusion power (assuming that such a power source actually would prove to be cheap).
Many experts, however, dispute these claims as being far too optimistic by many orders of magnitude. They point out that in 2004, the annual production of antiprotons at CERN was several picograms at a cost of $20 million. This means to produce 1 gram of antimatter, CERN would need to spend 100 quadrillion dollars and run the antimatter factory for 100 billion years.
Storage is another problem, as antiprotons are negatively charged and repel against each other, so that they cannot be concentrated in a small volume. Plasma oscillations in the charged cloud of antiprotons can cause instabilities that drive antiprotons out of the storage trap. For these reasons, to date only a few million antiprotons have been stored simultaneously in a magnetic trap, which corresponds to much less than a femtogram. Antihydrogen atoms or molecules are neutral so in principle they do not suffer the plasma problems of antiprotons described above. But cold antihydrogen is far more difficult to produce than antiprotons, and so far not a single antihydrogen atom has been trapped in a magnetic field.
One researcher of the CERN laboratories, which produces antimatter regularly, said:
If we could assemble all of the antimatter we've ever made at CERN and annihilate it with matter, we would have enough energy to light a single electric light bulb for a few minutes.[23]
Selasa, 10 November 2009
Liquid Nitrogen
Liquid nitrogen is nitrogen in a liquid state at a very low temperature. It is produced industrially by fractional distillation of liquid air. Liquid nitrogen is a colourless clear liquid with density at its boiling point of 0.807 g/mL and a dielectric constant of 1.4.[1] Liquid nitrogen is often referred to by the abbreviation, LN2 and has the UN number 1977.
At atmospheric pressure, liquid nitrogen boils at 77 K (−196 °C; −321 °F) and is a cryogenic fluid which can cause rapid freezing on contact with living tissue, which may lead to frostbite. When appropriately insulated from ambient heat, liquid nitrogen can be stored and transported, for example in vacuum flasks. Here, the very low temperature is held constant at 77 K by slow boiling of the liquid, resulting in the evolution of nitrogen gas. Depending on the size and design, the holding time of vacuum flasks ranges from a few hours to a few weeks.
Liquid nitrogen can easily be converted to the solid by placing it in a vacuum chamber pumped by a rotary vacuum pump.[2] Liquid nitrogen freezes at 63 K (−210 °C; −346 °F). Despite its reputation, liquid nitrogen's efficiency as a coolant is limited by the fact that it boils immediately on contact with a warmer object, enveloping the object in insulating nitrogen gas. This effect, known as the Leidenfrost effect, applies to any liquid in contact with an object significantly hotter than its boiling point. More rapid cooling may be obtained by plunging an object into a slush of liquid and solid nitrogen than into liquid nitrogen alone.
Nitrogen was first liquefied at the Jagiellonian University on 15 April 1883 by Polish physicists, Zygmunt Wróblewski and Karol Olszewski.
At atmospheric pressure, liquid nitrogen boils at 77 K (−196 °C; −321 °F) and is a cryogenic fluid which can cause rapid freezing on contact with living tissue, which may lead to frostbite. When appropriately insulated from ambient heat, liquid nitrogen can be stored and transported, for example in vacuum flasks. Here, the very low temperature is held constant at 77 K by slow boiling of the liquid, resulting in the evolution of nitrogen gas. Depending on the size and design, the holding time of vacuum flasks ranges from a few hours to a few weeks.
Liquid nitrogen can easily be converted to the solid by placing it in a vacuum chamber pumped by a rotary vacuum pump.[2] Liquid nitrogen freezes at 63 K (−210 °C; −346 °F). Despite its reputation, liquid nitrogen's efficiency as a coolant is limited by the fact that it boils immediately on contact with a warmer object, enveloping the object in insulating nitrogen gas. This effect, known as the Leidenfrost effect, applies to any liquid in contact with an object significantly hotter than its boiling point. More rapid cooling may be obtained by plunging an object into a slush of liquid and solid nitrogen than into liquid nitrogen alone.
Nitrogen was first liquefied at the Jagiellonian University on 15 April 1883 by Polish physicists, Zygmunt Wróblewski and Karol Olszewski.
Kritik untuk OpenOffice Writer
OpenOffice Writer merupakan solusi bagi mereka yang ingin menggunakan perangkat lunak pengolah kata yang legal dan murah karena bisa didapatkan secara bebas. Paling-paling kita hanya dibebani ongkos CD atau koneksi internetnya tanpa harus dipusingkan oleh segala macam tetek bengek lisensi.
Namun sebagaimana perangkat lunak open source lainnya, OpenOffice masih terkesan tidak user friendly. Kali ini saya mau menyoroti beberapa fitur autocorrect OpenOffice Writer yang kurang smart.
Yang pertama adalah masalah kapitalisasi huruf di awal kalimat, kita sebut saja fitur capitalized. Fitur capitalized ternyata tidak berlaku untuk awal paragraf kalau di akhir paragraf sebelumnya tidak ada titik. Jadi kalau saya membuat daftar dalam bentuk bullet atau numbering yang setiap itemnya tidak diberi titik, tidak ada fitur capitalized pada baris berikutnya.
Nah, kalau pas fitur capitalized bekerja dengan baik namun justru ingin kita batalkan, pembatalannya juga menjengkelkan. Contohnya adalah saat kita ingin menuliskan fungsi-fungsi pemrograman tertentu yang memang tidak boleh ditulis dengan huruf besar. Kalau nama fungsi tersebut dituliskan sebagai awal kalimat, tentu fitur capitalized akan membuat huruf awal menjadi huruf kapital.
Kalau kita tidak ingin itu terjadi, mestinya cukup dengan dibatalkan dengan undo atau shortcut Ctrl+Z. Masalahnya, kalau di-undo, kursor akan diletakkan pada huruf yang dibatalkan kapitalisasinya dan huruf itu sendiri berada dalam keadaan terseleksi (diblok). Jadi kita harus menggeser kursor kembali ke akhir kata. Celakanya, kalau kita menekan spasi (setiap kata harus dipisahkan dengan spasi, bukan?), kapitalisasi akan dilakukan lagi. Lha apa ndak menjengkelkan itu.
Lalu fitur pengenalan URL. Kalau kita menuliskan suatu URL, maka secara otomatis OpenOffice akan mengubahnya menjadi link. Kalau tidak ingin URL tersebut diubah menjadi link, batalkan saja dengan undo.
Sekarang masalahnya, kalau URL itu terletak di akhir paragraf, lalu kita berganti paragraf dengan menekan Enter, URL akan diubah menjadi link dan kursor akan diletakkan di baris baru. Kalau di-undo kursor akan kembali ke akhir paragraf tadi namun URL tetap menjadi link. Kalau di-undo lagi, link akan hilang dan teks URL akan berada dalam keadaan terseleksi (diblok). Kita terpaksa memindahkan kursor ke akhir paragraf. Kalau dienter lagi untuk ganti baris, tebak apa yang terjadi? URL akan diubah menjadi link lagi (adoh).
Dua itu dulu saja deh, setidaknya dua hal itu adalah hal yang paling mengganggu saya kalo bekerja dengan OpenOffice Writer. Semoga ini bisa diperbaiki pada rilis-rilis berikutnya.
Namun sebagaimana perangkat lunak open source lainnya, OpenOffice masih terkesan tidak user friendly. Kali ini saya mau menyoroti beberapa fitur autocorrect OpenOffice Writer yang kurang smart.
Yang pertama adalah masalah kapitalisasi huruf di awal kalimat, kita sebut saja fitur capitalized. Fitur capitalized ternyata tidak berlaku untuk awal paragraf kalau di akhir paragraf sebelumnya tidak ada titik. Jadi kalau saya membuat daftar dalam bentuk bullet atau numbering yang setiap itemnya tidak diberi titik, tidak ada fitur capitalized pada baris berikutnya.
Nah, kalau pas fitur capitalized bekerja dengan baik namun justru ingin kita batalkan, pembatalannya juga menjengkelkan. Contohnya adalah saat kita ingin menuliskan fungsi-fungsi pemrograman tertentu yang memang tidak boleh ditulis dengan huruf besar. Kalau nama fungsi tersebut dituliskan sebagai awal kalimat, tentu fitur capitalized akan membuat huruf awal menjadi huruf kapital.
Kalau kita tidak ingin itu terjadi, mestinya cukup dengan dibatalkan dengan undo atau shortcut Ctrl+Z. Masalahnya, kalau di-undo, kursor akan diletakkan pada huruf yang dibatalkan kapitalisasinya dan huruf itu sendiri berada dalam keadaan terseleksi (diblok). Jadi kita harus menggeser kursor kembali ke akhir kata. Celakanya, kalau kita menekan spasi (setiap kata harus dipisahkan dengan spasi, bukan?), kapitalisasi akan dilakukan lagi. Lha apa ndak menjengkelkan itu.
Lalu fitur pengenalan URL. Kalau kita menuliskan suatu URL, maka secara otomatis OpenOffice akan mengubahnya menjadi link. Kalau tidak ingin URL tersebut diubah menjadi link, batalkan saja dengan undo.
Sekarang masalahnya, kalau URL itu terletak di akhir paragraf, lalu kita berganti paragraf dengan menekan Enter, URL akan diubah menjadi link dan kursor akan diletakkan di baris baru. Kalau di-undo kursor akan kembali ke akhir paragraf tadi namun URL tetap menjadi link. Kalau di-undo lagi, link akan hilang dan teks URL akan berada dalam keadaan terseleksi (diblok). Kita terpaksa memindahkan kursor ke akhir paragraf. Kalau dienter lagi untuk ganti baris, tebak apa yang terjadi? URL akan diubah menjadi link lagi (adoh).
Dua itu dulu saja deh, setidaknya dua hal itu adalah hal yang paling mengganggu saya kalo bekerja dengan OpenOffice Writer. Semoga ini bisa diperbaiki pada rilis-rilis berikutnya.
Langganan:
Postingan (Atom)